3D Bioplotter Research Papers

Displaying all papers by J. Breitkreutz (5 results)

Comparative dissolution studies of 3D-printed inserts in a novel biopharmaceutical bladder model

International Journal of Pharmaceutics 2022 Volume 624, Article 121984

Urinary tract disorders come at great discomfort to the patients suffering from them. To treat them, several potent drug substances are available but unfortunately, systemic drug therapy often comes along with undesired adverse effects. Previous work has therefore been conducted aiming at a local drug release in the urinary bladder. However, whether a therapeutically relevant drug concentration may be reached at the target site is not easy to determine when applying common compendial dissolution methods. Therefore, the aim of this study was to develop a biorelevant dissolution model able to take physiological conditions into consideration, i.e. urine flow rates, urination…

Development of sustained-release drug-loaded intravesical inserts via semi-solid micro-extrusion 3D-printing for bladder targeting

International Journal of Pharmaceutics 2022 Volume 622, Article 121849

Discontinued treatment and non-adherence are oftentimes weaknesses of common first-line drug therapy against bladder conditions due to their negative side-effects. To overcome these limitations and increase patients’ quality of life, intravesical therapies are continuously being explored. 3D-printing offers the possibility of freely tailoring drug delivery systems to manufacture indwelling devices that may administer drugs locally over an extended time and avoiding frequently repeated administrations while minimizing systemic side-effects. In the present work, pressure-assisted micro syringe printing has been used to develop flexible drug-loaded inserts applicable via common urinary catheter that can remain up to several weeks inside the urinary bladder.…

3D-Printing with precise layer-wise dose adjustments for paediatric use via pressure-assisted microsyringe printing

European Journal of Pharmaceutics and Biopharmaceutics 2020 Volume 157, Pages 59-65

The establishment of 3D-printing as manufacturing process for oral solid dosage forms enables new options for the individualized medicine. The aim of this work was to develop a novel drug-printing model using pressure-assisted microsyringe (PAM) technology, which allows the precise dispensing of drug substances. Printed tablets with different numbers of layers, mimicking different doses for pediatric subgroups, were analyzed regarding mass variation, friability, thickness and disintegration time. Furthermore, the uniformity of dosage units and the dissolution behavior were investigated. Friability was

Investigation of semi-solid formulations for 3D printing of drugs after prolonged storage to mimic real-life applications

European Journal of Pharmaceutical Sciences 2020 Volume 146, Article 105266

The implementation of tailor-made dosage forms is currently one of the biggest challenges in the health sector. Over the last years, different approaches have been introduced to provide an individual and precise dispensing of the appropriate dose of an active pharmaceutical ingredient (API). A more recent approach, which has been intensively researched in the last years, is 3D-printing of medicines. The aim of this work was to develop printing formulations free of organic solvents for a pressure-assisted microsyringe printing method (PAM), which should also be printable over several days of storage. Furthermore, the printed dosage forms should provide a sustained…

On-demand manufacturing of immediate release levetiracetam tablets using pressure-assisted microsyringe printing

European Journal of Pharmaceutics and Biopharmaceutics 2019 Volume 134, Pages 29-36

Fast and accurate manufacturing of individually tailored solid dosage forms is one of the main challenges for personalized medicine. The use of 3D printers has recently been studied to determine their suitability for personalized drug manufacturing. In the current work, formulations free of organic solvents were developed for a pressure-assisted microsyringe printing method (PAM). The water soluble polymer polyvinyl alcohol-polyethylene glycol graft copolymer (PVA-PEG) was used as matrix, while levetiracetam (LEV) was used as model drug. Furthermore, the influence of a second polymer, polyvinylpyrrolidone-vinyl acetate copolymer (PVP-PVAc) on the properties of the printed tablets was investigated. Tablets were printed using…